CS155/254: Probabilistic Methods in Computer Science

Chapter 13.3: Martingale's Large Deviation Bound

Martingales

Definition

A sequence of random variables Z_0, Z_1, \ldots is a *martingale* with respect to the sequence X_0, X_1, \ldots if for all $n \ge 0$ the following hold:

Z_n is a function of X₀, X₁,..., X_n;
 E[|Z_n|] < ∞;
 E[Z_{n+1}|X₀, X₁,..., X_n] = Z_n;

Definition

A sequence of random variables Z_0, Z_1, \ldots is a *martingale* when it is a martingale with respect to itself, that is

1 $\mathbf{E}[|Z_n|] < \infty;$ **2** $\mathbf{E}[Z_{n+1}|Z_0, Z_1, \dots, Z_n] = Z_n;$

Martingale Stopping Theorem

Theorem

If Z_0, Z_1, \ldots is a martingale with respect to X_1, X_2, \ldots and if T is a stopping time for X_1, X_2, \ldots then (if T is finite),

$\mathbf{E}[Z_{\mathcal{T}}] = \mathbf{E}[Z_0]$

whenever one of the following holds:

- **1** there is a constant *c* such that, for all *i*, $|Z_i| \leq c$;
- **2** *T* is bounded;
- **3** $\mathbf{E}[T] < \infty$, and there is a constant c such that $\mathbf{E}[|Z_{i+1} Z_i||X_1, \dots, X_i] < c$.

Compound Stochastic Process

Examples:

- 1 Two stages game:
 - 1) roll one die; let X be the outcome;
 - I roll X standard dice; your gain Z is the sum of the outcomes of the X dice.

What is your expected gain?

A couple expects to have X children, X ~ G(p). They expect each of the children to have a number of children distributed G(r).

What is their expected number of grandchildren?

Wald's Equation

Theorem

Let X_1, X_2, \ldots be nonnegative, independent, identically distributed random variables with distribution X. Let T be a stopping time for this sequence. If T and X have bounded expectation, then

$$\mathbf{E}\left[\sum_{i}^{T} X_{i}\right] = \mathbf{E}[T]\mathbf{E}[X] \; .$$

Note that T is not independent of X_1, X_2, \ldots . Corollary of the martingale stopping theorem.

Proof

For $i \ge 1$, let $Z_i = \sum_{j=1}^{i} (X_j - \mathbf{E}[X])$.

The sequence Z_1, Z_2, \ldots is a martingale with respect to X_1, X_2, \ldots

1
$$Z_i$$
 is determined by $X_1, ..., X_i$
2 $E[|Z_i|] = E[|\sum_{j=1}^{i} (X_j - E[X])|] = \le 2iE[|X|]$
3 $E[Z_{i+1} - Z_i | X_0, X_1, ..., X_i] = E[X_{j+1} - E[X]] = 0$
 $E[Z_1] = 0, T$ is a stopping time, $E[T] < \infty$, and

 $\mathbf{E}[|Z_{i+1} - Z_i| \mid X_1, \dots, X_i] = \mathbf{E}[|X_{i+1} - \mathbf{E}[X]|] \le 2\mathbf{E}[|X|] .$

We can apply the martingale stopping theorem to compute

 $\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = 0 \ .$

We can apply the martingale stopping theorem to compute

 $\mathbf{E}[Z_T] = \mathbf{E}[Z_1] = 0 \ .$

$$0 = \mathbf{E}[Z_T] = \mathbf{E}\left[\sum_{j=1}^T (X_j - \mathbf{E}[X])\right] = \mathbf{E}\left[\sum_{j=1}^T X_j - T\mathbf{E}[X]\right]$$
$$= \mathbf{E}\left[\sum_{j=1}^T X_j\right] - \mathbf{E}[T] \cdot \mathbf{E}[X] = 0,$$

Examples

Two stages game:

- **1** roll one die; let X be the outcome;
- I roll X standard dice; your gain Z is the sum of the outcomes of the X dice.

What is your expected gain?

 Y_i = outcome of *i*th die in second stage.

$$\mathbf{E}[Z] = \mathbf{E}\left[\sum_{i=1}^{X} Y_i\right]$$

X is a stopping time for Y_1, Y_2, \ldots .

By Wald's equation:

$$\mathbf{E}[Z] = \mathbf{E}[X]\mathbf{E}[Y_i] = \left(\frac{7}{2}\right)^2$$

٠

Examples

A couple expect to have X children, $X \sim G(p)$. They expect each of their children to have a number of children distributed G(r). What is their expected number of grandchildren?

 $\frac{1}{p} \cdot \frac{1}{r}$

Example: a k-run

- We flip a fair coin until we get a consecutive sequence of *k* HEADs.
- What's the expected number of times we flip the coin.
- A SWITCH is a HEAD followed by a TAIL.
- Let X₁ be the number of flips till k HEADs or the first SWITCH
- Let X_i be the number of flips following the i 1 SWITCH till k HEADs or the next SWITCH (X_i includes the last HEAD or TAIL).
- Let T be the first i with k HEADs

$$\mathbf{E}[X_i] = \sum_{j \ge 1} j 2^{-j} + \sum_{j=1}^{k-1} j 2^{-j} + (k-1)2^{-(k-1)}$$

- Let X_i be the number of flips following the i 1 SWITCH till k HEADs or the next SWITCH (X_i includes the last HEAD or TAIL).
- Let T be the first i with k HEADs
- X_i = number of flips till (including) first HEAD + up to k 2HEADs followed by a TAIL, or k - 1 HEADS

$$\mathbf{E}[X_i] = \sum_{j \ge 1} j 2^{-j} + \sum_{j=1}^{k-1} j 2^{-j} + (k-1)2^{-(k-1)}$$

The probability that X_i ends with k HEADS is 2^{-(k-1)} - sequence of k - 1 HEADS following the first one.

 $\mathbf{E}[T] = 2^{k-1}$

• The expected number of coin flips is $E[X_i]E[T]$

Hoeffding's Bound

Theorem

Let $X_1, ..., X_n$ be independent random variables with $E[X_i] = \mu_i$ and $Pr(B_i \le X_i \le B_i + c_i) = 1$, then

$$\Pr\left(\left|\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mu_{i}\right| \ge \epsilon\right) \le 2e^{-\frac{2\epsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}}$$

Do we need independence?

Martingales Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots, Z_n be a martingale (with respect to X_1, X_2, \ldots) such that $|Z_k - Z_{k-1}| \le c_k$. Then, for all $t \ge 0$ and any $\lambda > 0$,

 $\Pr(|Z_t - Z_0| \ge \lambda) \le 2e^{-\lambda^2/(2\sum_{k=1}^t c_k^2)}$.

The following corollary is often easier to apply.

Corollary

Let X_0, X_1, \ldots be a martingale such that for all $k \ge 1$,

 $|X_k-X_{k-1}|\leq c$

Then for all $t \ge 1$ and $\lambda > 0$,

$$\Pr(|X_t - X_0| \ge \lambda c \sqrt{t}) \le 2e^{-\lambda^2/2}$$

•

Example

Assume that you play a sequence of *n* fair games, where the bet b_i in game *i* depends on the outcome of previous games. Let $B = \max_i b_i$. The probability of winning or losing more than λ is bounded by

 $\Pr(|Z_n| \ge \lambda) \le 2e^{-2\lambda^2/nB^2}$

 $\Pr(|Z_n| \ge \lambda B \sqrt{n}) \le 2e^{-2\lambda^2}$

$$\Pr\left(|Z_n| \ge \lambda \sqrt{\sum_{i=1}^n b_i^2}\right) \le 2e^{-2\lambda^2}$$

Tail Inequalities: A More General Form

Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots , be a martingale with respect to X_0, X_1, X_2, \ldots , such that

 $B_k \leq Z_k - Z_{k-1} \leq B_k + c_k \ ,$

for some constants c_k and for some random variables B_k that may be functions of $X_0, X_1, \ldots, X_{k-1}$. Then, for any $t \ge 0$ and $\lambda > 0$,

 $\Pr(|Z_t - Z_0| \geq \lambda) \leq 2e^{-2\lambda^2/(\sum_{k=1}^t c_k^2)}$.

Proof

Let $X^k = X_0, ..., X_k$ and $Y_i = Z_i - Z_{i-1}$.

Since $\mathbf{E}[Z_i \mid X^{i-1}] = Z_{i-1}$, $\mathbf{E}[Y_i \mid X^{i-1}] = \mathbf{E}[Z_i - Z_{i-1} \mid X^{i-1}] = 0$.

Since $\Pr(B_i \leq Y_i \leq B_i + c_i \mid X^{i-1}) = 1$, by Hoeffding's Lemma: $\mathbf{E}[e^{\beta Y_i} \mid X^{i-1}] \leq e^{\beta^2 c_i^2/8}$.

Lemma

(Hoeffding's Lemma) Let X be a random variable such that $Pr(X \in [a, b]) = 1$ and E[X] = 0. Then for every $\lambda > 0$,

 $\mathbf{E}[e^{\lambda X}] \leq e^{\lambda^2 (a-b)^2/8}.$

Proof of the Lemma

Lemma

(Hoeffding's Lemma) Let X be a random variable such that $Pr(X \in [a, b]) = 1$ and E[X] = 0. Then for every $\lambda > 0$,

 $\mathbf{E}[e^{\lambda X}] \leq e^{\lambda^2 (a-b)^2/8}.$

Since $f(x) = e^{\lambda x}$ is a convex function, for any $\alpha \in (0, 1)$ and $x \in [a, b]$,

$$f(X) \leq \alpha f(a) + (1 - \alpha)f(b)$$

Thus, for $\alpha = \frac{b-x}{b-a} \in (0,1)$,

$$e^{\lambda x} \leq \frac{b-x}{b-a}e^{\lambda a} + \frac{x-a}{b-a}e^{\lambda b}$$

٠

Taking expectation, and using E[X] = 0, we have

$$\mathsf{E}\left[e^{\lambda X}\right] \leq \frac{b}{b-a}e^{\lambda a} - \frac{a}{b-a}e^{\lambda b} \leq e^{\lambda^2(b-a)^2/8}$$

Proof of Azuma-Hoeffding Inequality

$$\mathbf{E} \left[e^{\beta Y_i} \mid X^{i-1} \right] \leq e^{\beta^2 c_i^2/8} .$$

$$\mathbf{E}_{X^n} \left[e^{\beta \sum_{i=1}^n Y_i} \right] = \mathbf{E}_{X^{n-1}} \left[\mathbf{E}_{X_n} \left[e^{\beta \sum_{i=1}^n Y_i} \mid X^{n-1} \right] \right]$$

$$= \mathbf{E}_{X^{n-1}} \left[e^{\beta \sum_{i=1}^{n-1} Y_i} \mathbf{E}_{X_n} \left[e^{\beta Y_n} \mid X^{n-1} \right] \right]$$

$$\leq e^{\beta^2 c_n^2/8} \mathbf{E}_{X^{n-1}} \left[e^{\beta \sum_{i=1}^{n-1} Y_i} \right]$$

$$\leq e^{\beta^2 \sum_{i=1}^n c_i^2/8}$$

In the second inequality we use the fact that X^{n-1} determines the values of Y_1, \ldots, Y_{n-1}

 $Y_i = Z_i - Z_{i-1}$ and $\mathbf{E}[e^{\beta \sum_{i=1}^n Y_i}] \le e^{\beta^2 \sum_{i=1}^n c_i^2/8}$

$$\Pr(Z_t - Z_0 \ge \lambda) = \Pr\left(\sum_{i=1}^t Y_i \ge \lambda\right) \le \frac{\mathsf{E}[e^{\beta \sum_{i=1}^t Y_i]}}{e^{\beta \lambda}}$$
$$\le e^{-\lambda\beta} e^{\beta^2 \sum_{i=1}^t c_i^2/8}$$
$$\le 2e^{-2\lambda^2/(\sum_{k=1}^t c_k^2)},$$

For $\beta = \frac{4\lambda}{\sum_{i=1}^{t} c_i^2}$. $\Pr(|Z_t - Z_0| \ge \lambda) \le 2e^{-2\lambda^2/(\sum_{k=1}^{t} c_k^2)}$

Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots, Z_n be a martingale (with respect to X_1, X_2, \ldots) such that $|Z_k - Z_{k-1}| \le c_k$. Then, for all $t \ge 0$ and any $\lambda > 0$,

 $\Pr(|Z_t - Z_0| \ge \lambda) \le 2e^{-\lambda^2/(2\sum_{k=1}^t c_k^2)}$.

Example

Assume that you play a sequence of *n* fair games, where the bet b_i in game *i* depends on the outcome of previous games. Let $B = \max_i b_i$. The probability of winning or losing more than λ is bounded by

 $\Pr(|Z_n| \ge \lambda) \le 2e^{-2\lambda^2/nB^2}$

 $\Pr(|Z_n| \ge \lambda B \sqrt{n}) \le 2e^{-2\lambda^2}$

$$\Pr\left(|Z_n| \ge \lambda \sqrt{\sum_{i=1}^n b_i^2}\right) \le 2e^{-2\lambda^2}$$

Doob Martingale

Let $X_1, X_2, ..., X_n$ be sequence of random variables. Let $Y = f(X_1, ..., X_n)$ be a random variable with $E[|Y|] < \infty$.

For
$$i = 0, 1, ..., n$$
, let

$$Z_0 = \mathbf{E}[Y] = \mathbf{E}_{X[1,n]} f(X_1, ..., X_n]$$

$$Z_i = \mathbf{E}_{X[i+1,n]} [Y|X_1 = x_1, X_2 = x_2, ..., X_i = x_i]$$

$$Z_n = \mathbf{E}[Y|X_1 = x_1, X_2 = x_2, ..., X_n = x_n] = f(x_1, ..., x_n)$$

Theorem

 Z_0, Z_1, \ldots, Z_n is martingale with respect to X_1, X_2, \ldots, X_n .

Proof

 $Y = f(X_1, ..., X_n),$ $Z_0 = \mathbf{E}[Y],$ $Z_i = \mathbf{E}_{X[i+1,n]}[Y|X_1 = x_1, ..., X_i = x_i],$ $Z_1, Z_2, ..., Z_n \text{ is a martingale if } E[|Z_i|] = E[|Y|] < \infty, \text{ and}$ $\mathbf{E}_{X_{i+1}}[Z_{i+1}|X_1 = x_1, ..., X_i = x_i] = Z_i$

$$\begin{aligned} \mathbf{E}_{X_{i+1}}[Z_{i+1}|x_1, x_2, \dots, x_i] &= \mathbf{E}_{X_{i+1}}[\mathbf{E}_{X[i+2,n]}[Y|X_1, \dots, X_{i+1}]|x_1, \dots, x_i] \\ &= \mathbf{E}_{X[i+1,n]}[Y|x_1, x_2, \dots, x_i] \\ &= Z_i \end{aligned}$$

Example: Balls and Bins

We are throwing m balls independently and uniformly at random into n bins.

Let X_i = the bin that the *i*th ball falls into.

Let F be the number of empty bins after the m balls are thrown.

$$\mathbf{E}[F] = n \left(1 - \frac{1}{n}\right)^m$$

How far can F be from its expectation?

The sequence $Z_i = \mathbf{E}[F \mid X_1, \dots, X_i]$ is a Doob martingale.

We verify that Z_1, \ldots, Z_n is a martingale (which we already know, since it's Doob martingale.)

$$Z_{i} = \mathbf{E}[F \mid X_{1}, \dots, X_{i}] = E_{X[i+1,n]}[F(x_{1}, \dots, x_{i}, X_{i+1}, \dots, X_{n})]$$

$$Z_{i+1} = \mathbf{E}[F \mid X_{1}, \dots, X_{i+1}] = E_{X[i+2,n]}[F(x_{1}, \dots, x_{i}, x_{i+1}, X_{i+2}, \dots, X_{n})]$$

$$\mathbf{E}_{X_{i+1}}[Z_{i+1}|X_{i}, \dots, X_{n}] = E_{X[i+1,n]}[F(x_{1}, \dots, x_{i}, X_{i+1}, \dots, X_{n})]$$

Example: Balls and Bins

Theorem

Let Z_0, Z_1, \ldots be a martingale such that for all $k \ge 1$, $|Z_k - Z_{k-1}| \le c$. Then for all $t \ge 1$ and $\lambda > 0$,

 $\Pr(|Z_t - Z_0| \ge \lambda c \sqrt{t}) \le 2e^{-\lambda^2/2}$.

Let X_i = the bin that the *i*th ball falls into. Let F be the number of empty bins after the *m* balls are thrown. The sequence $Z_i = \mathbf{E}[F \mid X_1, \dots, X_i]$ is a Doob martingale, and $|Z_i - Z_{i-1}| \leq 1$.

$$\Pr(|F - \mathbf{E}[F]|| \ge \lambda \sqrt{m}) \le 2e^{-\lambda^2/2}$$

Assume m = n, $E[F] = n(1 - \frac{1}{n})^m \approx ne^{-1}$.

$$Pr(|F - ne^{-1}| \ge \lambda \sqrt{n}) \le 2e^{-\lambda^2/2}$$

Example: Pattern Matching

 $A = (a_1, a_2, \dots, a_n)$ string of characters, each chosen independently and uniformly at random from Σ , with $m = |\Sigma|$.

pattern: $B = (b_1, \ldots, b_k)$ fixed string, $b_i \in \Sigma$.

F = number occurrences of B in random string S.

$$\mathbf{E}[F] = (n-k+1)\left(\frac{1}{m}\right)^k$$

Can we bound the deviation of F from its expectation?

F = number occurrences of B in random string A.

 $Z_0 = \mathbf{E}[F]$ and $Z_n = F$.

 $Z_i = \mathbf{E}[F|a_1, ..., a_i]$, for i = 1, ..., n.

 Z_0, Z_1, \ldots, Z_n is a Doob martingale.

Each character in A can participate in no more than k occurrences of B:

 $|Z_i-Z_{i+1}|\leq k$

Azuma-Hoeffding inequality (version 1):

 $\Pr(|F - \mathbf{E}[F]| \ge \lambda) \le 2e^{-\lambda^2/(2nk^2)}$.

Tail Inequalities for Doob Martingales

- Let X_1, \ldots, X_n be sequence of random variables.
- $Y = f(X_1, \ldots, X_n)$ is a function of X_1, X_2, \ldots, X_n ;
- $\mathbf{E}[|Y|] < \infty$.
- Doob Martingale: $Z_i = \mathbf{E}[Y = f(X_1, \dots, X_n)|X_1, \dots, X_i]$

 Z_0, Z_1, \ldots, Z_n is martingale with respect to X_1, \ldots, X_n .

Theorem

Let Z_0, Z_1, \ldots be a martingale such that for all $k \ge 1$, $|Z_k - Z_{k-1}| \le c$. Then for all $t \ge 1$ and $\lambda > 0$,

 $\Pr(|Z_t - Z_0| \ge \lambda c \sqrt{t}) \le 2e^{-\lambda^2/2}$.

We need a bound on

$$|Z_i - Z_{i-1}| = |\mathbf{E}[Y|X_1, \dots, X_i] - \mathbf{E}[Y|X_1, \dots, X_{i-1}]|$$

Simple Example

 $Y = f(X_1, \dots, X_n) = \sum_{i=1}^n X_i, \quad X_i \text{ independent} \sim U[0, 1].$ $Z_0 = \mathbf{E}[Y] = \mathbf{E}_{X[1,n]}f(X_1, \dots, X_n)] = \mathbf{E}[\sum_{i=1}^n X_i] = n/2$ $Z_i = \mathbf{E}_{X[i+1,n]}[Y|x_1, \dots, x_i]$

$$= \sum_{j=1}^{n} x_j + \mathbf{E}[\sum_{j=i}^{n} X_i] = \sum_{j=1}^{n} x_j + (n-i)/2$$
$$Z_n = \mathbf{E}[Y|x_1, \dots, x_n] = f(x_1, \dots, x_n) = \sum_{j=1}^{n} x_j$$

$$|Z_i - Z_{i-1}| = |\mathbf{E}[Y|X_1, \dots, X_i] - \mathbf{E}[Y|X_1, \dots, X_{i-1}]|$$

$$= |\sum_{j=1}^{i} x_j + (n-i)/2 - \sum_{j=1}^{i-1} x_j + (n-i+1)/2| = |x_i - 1/2|$$

Example with Dependencies

 $Y = f(X_1, \ldots, X_n) = \sum_{i=1}^n X_i, X_0 = 0$ and X_i 's independent with $\sim U[X_{i-1}-1, X_{i-1}+1].$ $\mathbf{E}[X_1] = 0, \ E[X_i \mid X_{i-1}] = X_{i-1}, \ \text{For } i > j, \ \mathbf{E}_{X_i \mid i+1}[X_i \mid X_i = x_i] = x_i.$ $Z_0 = \mathbf{E}[Y] = \mathbf{E}_{X[1,n]} f(X_1, \dots, X_n) = \mathbf{E}[\sum_{i=1}^n X_i] = 0$ $Z_i = \mathbf{E}_{X[i+1,n]}[Y|x_1,\ldots,x_i]$ $= \sum_{i=1}^{l} x_j + \mathbf{E}_{X[i+1,n]} [\sum_{i=1}^{n} X_i | x_1, \dots, x_i] = \sum_{i=1}^{l} x_i + (n-i)x_i$ $Z_n = \mathbf{E}[Y|x_1,\ldots,x_n] = f(x_1,\ldots,x_n) = \sum_{j=1}^n x_j$ $|Z_i - Z_{i-1}| = |\mathbf{E}[Y|X_1, \dots, X_i] - \mathbf{E}[Y|X_1, \dots, X_{i-1}]|$

$$= |\sum_{j=1}^{i} x_j + (n-i)x_i - \sum_{j=i-1}^{i} x_j + (n-i+1)x_{i-1}| = (n-i)|x_i - x_{i-1}|$$

McDiarmid Bound

In general it is hard to prove a bound on $|Z_i - Z_{i-1}|$. This theorem gives a sufficient condition:

Theorem

Assume that $f(X_1, X_2, ..., X_n)$ satisfies, for all $1 \le i \le n$,

$$|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,y_i,\ldots,x_n)|\leq c_i$$

and X_1, \ldots, X_n are independent, then

 $\Pr(|f(X_1,\ldots,X_n)-\mathbf{E}[f(X_1,\ldots,X_n)]| \geq \lambda) \leq 2e^{-2\lambda^2/(\sum_{k=1}^n c_k^2)}.$

[Changing the value of X_i changes the value of the function by at most c_i .]

Proof

Define a Doob martingale Z_0, Z_1, \ldots, Z_n :

- $Z_0 = \mathbf{E}[f(X_1,\ldots,X_n)] = \mathbf{E}[f(\bar{X})]$
- $Z_i = \mathbf{E}[f(X_0, ..., X_n) \mid X_1, ..., X_i] = \mathbf{E}[f(X_i, ..., X_n) \mid X^i]$
- $Z_n = f(X_1,\ldots,X_n) = f(\bar{X})$

We want to prove that this martingale satisfies the conditions of

Theorem (Azuma-Hoeffding Inequality)

Let Z_0, Z_1, \ldots , be a martingale with respect to X_0, X_1, X_2, \ldots , such that

 $B_k \leq Z_k - Z_{k-1} \leq B_k + c_k \ ,$

for some constants c_k and for some random variables B_k that may be functions of $X_0, X_1, \ldots, X_{k-1}$. Then, for all $t \ge 0$ and any $\lambda > 0$,

 $\Pr(|Z_t - Z_0| \ge \lambda) \le 2e^{-2\lambda^2/(\sum_{k=1}^t c_k^2)}$.

Lemma

If X_1, \ldots, X_n are independent and

$$|f(x_1,\ldots,x_i,\ldots,x_n)-f(x_1,\ldots,y_i,\ldots,x_n)|\leq c_i$$

then for some random variable B_k ,

$$B_k \leq Z_k - Z_{k-1} \leq B_k + c_k \ ,$$

 $Z_{k} - Z_{k-1} = \mathbf{E}[f(\bar{X}) | X^{k}] - \mathbf{E}[f(\bar{X}) | X^{k-1}] .$ Hence $Z_{k} - Z_{k-1}$ is bounded above by $\sup_{X} \mathbf{E}[f(\bar{X}) | X^{k-1}, X_{k} = x] - \mathbf{E}[f(\bar{X}) | X^{k-1}]$ and bounded below by

$$\inf_{y} \mathbf{E}[f(\bar{X}) \mid X^{k-1}, X_k = y] - \mathbf{E}[f(\bar{X}) \mid X^{k-1}]$$

.

$$Z_k - Z_{k-1} = \sup_{x,y} \mathbf{E}[f(\bar{X}, X_k = x) - f(\bar{X}, X_k = y) \mid X^{k-1}].$$

Because the X_i are independent, the values for X_{k+1}, \ldots, X_n do not depend on the values of X_1, \ldots, X_k .

$$\sup_{x,y} \mathbf{E}[f(\bar{X},x) - f(\bar{X},y) \mid X_1 = x_1, \dots, X_{k-1} = x_{k-1}]$$

=
$$\sup_{x,y} \sum_{x_{k+1},\dots,x_n} \Pr((X_{k+1} = x_{k+1}) \cap \dots \cap (X_n = x_n)) \cdot (f(x_{[1,k-1]}, x, x_{[k+1,n]} - f(x_{[1,k-1]}, y, x_{[k+1,n]})))$$

But

$$(f(x_{[1,k-1]}, x, x_{[k+1,n]} - f(x_{[1,k-1]}, y, x_{[k+1,n]}) \le c_k)$$

and therefore

$$\mathsf{E}[f(\bar{X},x) - f(\bar{X},y) \mid X^{k-1}] \leq c_k$$

- Start with m balls, r red, m r blue.
- Repeat *n* times:
 - 1 Pick a ball uniformly at random, check its color and return it to the urn.
 - 2 If red, add a new red ball, else add a new blue ball.
- Let $X_i = 1$ if we add a red ball at step *i*, else $X_i = 0$

We want to estimate the number of new red balls among the n new balls, starting with ratio r/m

$$S_n\left(\frac{r}{m}\right) = \sum_{i=1}^n X_i = f(X_1,\ldots,X_n)$$

Claim: $\mathbf{E}[S_n(\frac{r}{m})] = n\frac{r}{m}$. On "average" the ratio doesn't change: $\frac{r+n\frac{r}{m}}{m+n} = \frac{r(1+\frac{n}{m})}{m(1+\frac{n}{m})} = \frac{r}{m}$

Start with M balls, R red, M - R blue. Repeat n times: pick a ball uniformly at random. If red add a red ball, else add a blue ball.

 $X_i = 1$ if we add a red ball in step *i*, else $X_i = 0$.

$$S_n(r/m) = \sum_{i=1}^n X_i = f(X_1, \ldots, X_n)$$

Claim: $\mathbf{E}[S_n(\frac{r}{m})] = n\frac{r}{m}$.

Proof: By induction on $t \ge 0$, that $\mathbf{E}[S_t] = tr/m$.

$$\mathbf{E}[S_{t+1} \mid S_t] = S_t + \frac{r + S_t}{m+t}$$

$$\mathbf{E}[S_{t+1}] = \mathbf{E}[\mathbf{E}[S_{t+1} \mid S_t]] = \mathbf{E}\left[S_t + \frac{r+S_t}{m+t}\right]$$
$$= t\frac{r}{m} + \frac{r+tr/m}{m+t} = t\frac{r}{m} + \frac{r(1+t/m)}{m(1+t/m)} = (t+1)\frac{r}{m}$$

 $X_i = 1$ if added a red ball in step *i*, else $X_i = 0$,

 $S_n(\frac{r}{m}) = \sum_{i=1}^n X_i$, and $\mathbf{E}[S_n(\frac{r}{m})] = n\frac{r}{m}$

Let $Z_i = \mathbf{E}[S_n | X_1 = x_1, \dots, X_i = x_i]$. We verify that Z_1, \dots, Z_n is a martingale (which we already know, since it's Doob martingale.)

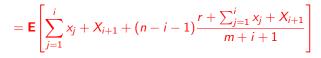
$$Z_i = \mathbf{E}[S_n | X_1 = x_1, \dots, X_i = x_i] = \sum_{j=1}^i x_j + E[S_{n-i}(\frac{r + \sum_{j=1}^i x_j}{m+i})]$$
$$= \sum_{j=1}^i x_j + (n-i)\frac{r + \sum_{j=1}^i x_j}{m+i}$$

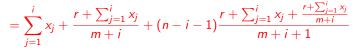
 $\mathbf{E}[Z_{i+1} \mid X_1, \dots, X_i] = \mathbf{E}[\mathbf{E}[S_n | X_1, X_2, \dots, X_{i+1}] \mid X_1 = x_1, \dots, X_i = x_i]$

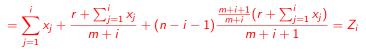
$$= \mathbf{E}\left[\sum_{j=1}^{i} x_j + X_{i+1} + S_{n-i-1}\left(\frac{r + \sum_{j=1}^{i} x_j + X_{i+1}}{m+i+1}\right)\right]$$

$$Z_i = \mathbf{E}[S_n| \ X_1 = x_1, \dots, X_i = x_i] = \sum_{j=1}^i x_j + (n-i) \frac{r + \sum_{j=1}^i x_j}{m+i}$$

$$\mathbf{E}[Z_{i+1} \mid X_1, ..., X_i] = \mathbf{E}\left[\sum_{j=1}^i x_j + X_{i+1} + S_{n-i-1}\left(\frac{r + \sum_{j=1}^i x_j + X_{i+1}}{m+i+1}\right)\right]$$







- Start with m balls, r red, m r blue.
- Repeat *n* times:
 - Pick a ball uniformly at random, check its color and return it to the urn.

2 If red, add a new red ball, else add a new blue ball.

• Let $X_i = 1$ if we add a red ball at step *i*, else $X_i = 0$

 $S_n\left(\frac{r}{m}\right) = \sum_{i=1}^n X_i = f(X_1, \dots, X_n)$ satisfies the Lipschitz condition with bound 1, and the X_i 's are independent.

 $\mathbf{E}[S_n(\frac{r}{m})] = n\frac{r}{m}.$ $Z_i = \mathbf{E}[S_n | X_1 = x_1, \dots, X_i = x_i] \text{ is a Doob martingale.}$

$$\Pr(|S_n - n\frac{r}{m}| \ge \epsilon) \le 2e^{-2\epsilon^2/n}$$

$$\Pr(|S_n - n\frac{r}{m}| \ge \lambda \sqrt{n}) \le 2e^{-2\lambda^2}$$