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Martingales

Definition

A sequence of random variables Z0,Z1, . . . is a martingale with
respect to the sequence X0,X1, . . . if for all n ≥ 0 the following
hold:

1 Zn is a function of X0,X1, . . . ,Xn;

2 E[|Zn|] < ∞;

3 E[Zn+1|X0,X1, . . . ,Xn] = Zn;

Definition

A sequence of random variables Z0,Z1, . . . is a martingale when it
is a martingale with respect to itself, that is

1 E[|Zn|] < ∞;

2 E[Zn+1|Z0,Z1, . . . ,Zn] = Zn;
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Martingale Stopping Theorem

Theorem

If Z0,Z1, . . . is a martingale with respect to X1,X2, . . . and if T is
a stopping time for X1,X2, . . . then (if T is finite),

E[ZT ] = E[Z0]

whenever one of the following holds:

1 there is a constant c such that, for all i , |Zi | ≤ c ;

2 T is bounded;

3 E[T ] < ∞, and there is a constant c such that
E
[
|Zi+1 − Zi |

∣∣X1, . . . ,Xi

]
< c.
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Compound Stochastic Process

Examples:

1 Two stages game:

1 roll one die; let X be the outcome;
2 roll X standard dice; your gain Z is the sum of the outcomes

of the X dice.

What is your expected gain?

2 A couple expects to have X children, X ∼ G (p). They expect
each of the children to have a number of children distributed
G (r).
What is their expected number of grandchildren?
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Wald’s Equation

Theorem

Let X1,X2, . . . be nonnegative, independent, identically distributed
random variables with distribution X . Let T be a stopping time for
this sequence. If T and X have bounded expectation, then

E

[
T∑
i

Xi

]
= E[T ]E[X ] .

Note that T is not independent of X1,X2, . . . .
Corollary of the martingale stopping theorem.
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Proof

For i ≥ 1, let Zi =
∑i

j=1(Xj − E[X ]).

The sequence Z1,Z2, . . . is a martingale with respect to X1,X2, . . ..

1 Zi is determined by X1, . . . ,Xi

2 E [|Zi |] = E [|
∑i

j=1(Xj − E [X ])|] =≤ 2iE [|X |]
3 E [Zi+1 − Zi | X0,X1, . . . ,Xi ] = E [Xj+1 − E [X ]] = 0

E[Z1] = 0, T is a stopping time, E[T ] < ∞, and

E
[
|Zi+1 − Zi |

∣∣ X1, . . . ,Xi

]
= E[|Xi+1 − E[X ]|] ≤ 2E[|X |] .

We can apply the martingale stopping theorem to compute

E[ZT ] = E[Z1] = 0 .
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We can apply the martingale stopping theorem to compute

E[ZT ] = E[Z1] = 0 .

0 = E[ZT ] = E

 T∑
j=1

(Xj − E[X ])

 = E

 T∑
j=1

Xj − TE[X ]


= E

 T∑
j=1

Xj

− E[T ] · E[X ] = 0,
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Examples

Two stages game:

1 roll one die; let X be the outcome;

2 roll X standard dice; your gain Z is the sum of the outcomes
of the X dice.

What is your expected gain?

Yi = outcome of ith die in second stage.

E[Z ] = E

[
X∑
i=1

Yi

]
.

X is a stopping time for Y1,Y2, . . . .

By Wald’s equation:

E[Z ] = E[X ]E[Yi ] =

(
7

2

)2

.
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Examples

A couple expect to have X children, X ∼ G (p). They expect each
of their children to have a number of children distributed G (r).
What is their expected number of grandchildren?

1

p
· 1
r
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Example: a k-run

• We flip a fair coin until we get a consecutive sequence of k
HEADs.

• What’s the expected number of times we flip the coin.

• A SWITCH is a HEAD followed by a TAIL.

• Let X1 be the number of flips till k HEADs or the first
SWITCH

• Let Xi be the number of flips following the i − 1 SWITCH till
k HEADs or the next SWITCH (Xi includes the last HEAD or
TAIL).

• Let T be the first i with k HEADs

E[Xi ] =
∑
j≥1

j2−j +
k−1∑
j=1

j2−j + (k − 1)2−(k−1)
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• Let Xi be the number of flips following the i − 1 SWITCH till
k HEADs or the next SWITCH (Xi includes the last HEAD or
TAIL).

• Let T be the first i with k HEADs

• Xi = number of flips till (including) first HEAD + up to k − 2
HEADs followed by a TAIL, or k − 1 HEADS

E[Xi ] =
∑
j≥1

j2−j +
k−1∑
j=1

j2−j + (k − 1)2−(k−1)

• The probability that Xi ends with k HEADS is 2−(k−1) -
sequence of k − 1 HEADS following the first one.

E[T ] = 2k−1

• The expected number of coin flips is E[Xi ]E [T ]

11 / 38



Hoeffding’s Bound

Theorem

Let X1, . . . ,Xn be independent random variables with E[Xi ] = µi

and Pr(Bi ≤ Xi ≤ Bi + ci ) = 1, then

Pr

(∣∣∣∣∣
n∑

i=1

Xi −
n∑

i=1

µi

∣∣∣∣∣ ≥ ϵ

)
≤ 2e

− 2ϵ2∑n
i=1

c2
i

Do we need independence?
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Martingales Tail Inequalities

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . ,Zn be a martingale (with respect to X1,X2, . . . )
such that |Zk − Zk−1| ≤ ck . Then, for all t ≥ 0 and any λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−λ2/(2
∑t

k=1 c
2
k ) .

The following corollary is often easier to apply.

Corollary

Let X0,X1, . . . be a martingale such that for all k ≥ 1,

|Xk − Xk−1| ≤ c .

Then for all t ≥ 1 and λ > 0,

Pr
(
|Xt − X0| ≥ λc

√
t
)
≤ 2e−λ2/2 .
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Example

Assume that you play a sequence of n fair games, where the bet bi
in game i depends on the outcome of previous games. Let
B = maxi bi . The probability of winning or losing more than λ is
bounded by

Pr(|Zn| ≥ λ) ≤ 2e−2λ2/nB2

Pr(|Zn| ≥ λB
√
n) ≤ 2e−2λ2

Pr

|Zn| ≥ λ

√√√√ n∑
i=1

b2i

 ≤ 2e−2λ2
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Tail Inequalities: A More General Form

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . , be a martingale with respect to X0,X1,X2, . . . ,
such that

Bk ≤ Zk − Zk−1 ≤ Bk + ck ,

for some constants ck and for some random variables Bk that may
be functions of X0,X1, . . . ,Xk−1. Then, for any t ≥ 0 and λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−2λ2/(
∑t

k=1 c
2
k ) .
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Proof
Let X k = X0, . . . ,Xk and Yi = Zi − Zi−1.

Since E[Zi | X i−1] = Zi−1,

E[Yi | X i−1] = E[Zi − Zi−1 | X i−1] = 0 .

Since Pr(Bi ≤ Yi ≤ Bi + ci | X i−1) = 1, by Hoeffding’s Lemma:

E[eβYi | X i−1] ≤ eβ
2c2i /8 .

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that
Pr(X ∈ [a, b]) = 1 and E[X ] = 0. Then for every λ > 0,

E[eλX ] ≤ eλ
2(a−b)2/8.
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Proof of the Lemma

Lemma

(Hoeffding’s Lemma) Let X be a random variable such that
Pr(X ∈ [a, b]) = 1 and E[X ] = 0. Then for every λ > 0,

E[eλX ] ≤ eλ
2(a−b)2/8.

Since f (x) = eλx is a convex function, for any α ∈ (0, 1) and
x ∈ [a, b],

f (X ) ≤ αf (a) + (1− α)f (b) .

Thus, for α = b−x
b−a ∈ (0, 1),

eλx ≤ b − x

b − a
eλa +

x − a

b − a
eλb .

Taking expectation, and using E[X ] = 0, we have

E
[
eλX

]
≤ b

b − a
eλa − a

b − a
eλb ≤ eλ

2(b−a)2/8 .
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Proof of Azuma-Hoeffding Inequality

E
[
eβYi

∣∣∣ X i−1
]
≤ eβ

2c2i /8 .

EX n

[
eβ

∑n
i=1 Yi

]
= EX n−1

[
EXn

[
eβ

∑n
i=1 Yi

∣∣ X n−1
]]

= EX n−1

[
eβ

∑n−1
i=1 YiEXn

[
eβYn | X n−1

]]
≤ eβ

2c2n/8EX n−1

[
eβ

∑n−1
i=1 Yi

]
≤ eβ

2
∑n

i=1 c
2
i /8

In the second inequality we use the fact that X n−1 determines the
values of Y1, . . . ,Yn−1
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Yi = Zi − Zi−1 and E[eβ
∑n

i=1 Yi ] ≤ eβ
2
∑n

i=1 c
2
i /8

Pr(Zt − Z0 ≥ λ) = Pr

(
t∑

i=1

Yi ≥ λ

)
≤ E[eβ

∑t
i=1 Yi ]

eβλ

≤ e−λβeβ
2
∑t

i=1 c
2
i /8

≤ 2e−2λ2/(
∑t

k=1 c
2
k ),

For β = 4λ∑t
i=1 c

2
i

.

Pr(|Zt − Z0| ≥ λ) ≤ 2e−2λ2/(
∑t

k=1 c
2
k )

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . ,Zn be a martingale (with respect to X1,X2, . . . )
such that |Zk − Zk−1| ≤ ck . Then, for all t ≥ 0 and any λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−λ2/(2
∑t

k=1 c
2
k ) .
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Example

Assume that you play a sequence of n fair games, where the bet bi
in game i depends on the outcome of previous games. Let
B = maxi bi . The probability of winning or losing more than λ is
bounded by

Pr(|Zn| ≥ λ) ≤ 2e−2λ2/nB2

Pr(|Zn| ≥ λB
√
n) ≤ 2e−2λ2

Pr

|Zn| ≥ λ

√√√√ n∑
i=1

b2i

 ≤ 2e−2λ2
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Doob Martingale

Let X1,X2, . . . ,Xn be sequence of random variables. Let
Y = f (X1, . . . ,Xn) be a random variable with E[|Y |] < ∞.

For i = 0, 1, . . . , n, let

Z0 = E[Y ] = EX [1,n]f (X1, . . . ,Xn]

Zi = EX [i+1,n][Y |X1 = x1,X2 = x2, . . . ,Xi = xi ]

Zn = E[Y |X1 = x1,X2 = x2, . . . ,Xn = xn] = f (x1, . . . , xn)

Theorem

Z0,Z1, . . . ,Zn is martingale with respect to X1,X2, . . . ,Xn.
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Proof

Y = f (X1, . . . ,Xn),
Z0 = E[Y ],
Zi = EX [i+1,n][Y |X1 = x1, . . . ,Xi = xi ],

Z1,Z2. . . . ,Zn is a martingale if E [|Zi |] = E [|Y |] < ∞, and

EXi+1 [Zi+1|X1 = x1, . . . ,Xi = xi ] = Zi

EXi+1 [Zi+1|x1, x2, . . . , xi ] = EXi+1 [EX [i+2,n][Y |X1, . . . ,Xi+1]|x1, ..., xi ]
= EX [i+1,n][Y |x1, x2, . . . , xi ]
= Zi .
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Example: Balls and Bins
We are throwing m balls independently and uniformly at random into n
bins.
Let Xi = the bin that the ith ball falls into.
Let F be the number of empty bins after the m balls are thrown.

E[F ] = n

(
1− 1

n

)m

,

How far can F be from its expectation?

The sequence Zi = E[F | X1, . . . ,Xi ] is a Doob martingale.

We verify that Z1, . . . ,Zn is a martingale (which we already know, since
it’s Doob martingale.)

Zi = E[F | X1, . . . ,Xi ] = EX [i+1,n][F (x1, . . . , xi ,Xi+1, . . . ,Xn)]

Zi+1 = E[F | X1, . . . ,Xi+1] = EX [i+2,n][F (x1, . . . , xi , xi+1,Xi+2, . . . ,Xn)]

EXi+1 [Zi+1|Xi , . . . ,Xn] = EX [i+1,n][F (x1, . . . , xi ,Xi+1, . . . ,Xn)]
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Example: Balls and Bins

Theorem

Let Z0,Z1, . . . be a martingale such that for all k ≥ 1,
|Zk − Zk−1| ≤ c . Then for all t ≥ 1 and λ > 0,

Pr
(
|Zt − Z0| ≥ λc

√
t
)
≤ 2e−λ2/2 .

Let Xi = the bin that the ith ball falls into.
Let F be the number of empty bins after the m balls are thrown.
The sequence Zi = E[F | X1, . . . ,Xi ] is a Doob martingale, and
|Zi − Zi−1| ≤ 1.

Pr
(
|F − E[F ]|| ≥ λ

√
m
)
≤ 2e−λ2/2 .

Assume m = n, E [F ] = n(1− 1
n )

m ≈ ne−1.

Pr(|F − ne−1| ≥ λ
√
n) ≤ 2e−λ2/2
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Example: Pattern Matching

A = (a1, a2, . . . , an) string of characters, each chosen
independently and uniformly at random from Σ, with m = |Σ|.

pattern: B = (b1, . . . , bk) fixed string, bi ∈ Σ.

F= number occurrences of B in random string S .

E[F ] = (n − k + 1)

(
1

m

)k

.

Can we bound the deviation of F from its expectation?

25 / 38



F= number occurrences of B in random string A.

Z0 = E[F ] and Zn = F .

Zi = E[F |a1, . . . , ai ], for i = 1, . . . , n.

Z0,Z1, . . . ,Zn is a Doob martingale.

Each character in A can participate in no more than k occurrences
of B:

|Zi − Zi+1| ≤ k .

Azuma-Hoeffding inequality (version 1):

Pr(|F − E[F ]| ≥ λ) ≤ 2e−λ2/(2nk2) .
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Tail Inequalities for Doob Martingales

• Let X1, . . . ,Xn be sequence of random variables.
• Y = f (X1, . . . ,Xn) is a function of X1,X2, . . . ,Xn;
• E[|Y |] < ∞.
• Doob Martingale: Zi = E[Y = f (X1, . . . ,Xn)|X1, . . . ,Xi ]

Z0,Z1, . . . ,Zn is martingale with respect to X1, . . . ,Xn.

Theorem

Let Z0,Z1, . . . be a martingale such that for all k ≥ 1,
|Zk − Zk−1| ≤ c . Then for all t ≥ 1 and λ > 0,

Pr
(
|Zt − Z0| ≥ λc

√
t
)
≤ 2e−λ2/2 .

We need a bound on

|Zi − Zi−1| = |E[Y |X1, . . . ,Xi ]− E[Y |X1, . . . ,Xi−1]|
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Simple Example

Y = f (X1, . . . ,Xn) =
∑n

i=1 Xi , Xi independent ∼ U[0, 1].

Z0 = E[Y ] = EX [1,n]f (X1, . . . ,Xn)] = E[
n∑

i=1

Xi ] = n/2

Zi = EX [i+1,n][Y |x1, . . . , xi ]

=
i∑

j=1

xj + E[
n∑
j=i

Xi ] =
i∑

j=1

xj + (n − i)/2

Zn = E[Y |x1, . . . , xn] = f (x1, . . . , xn) =
n∑

j=1

xj

|Zi − Zi−1| = |E[Y |X1, . . . ,Xi ]− E[Y |X1, . . . ,Xi−1]|

= |
i∑

j=1

xj + (n − i)/2−
i−1∑
j=1

xj + (n − i + 1)/2| = |xi − 1/2|
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Example with Dependencies
Y = f (X1, . . . ,Xn) =

∑n
i=1 Xi , X0 = 0 and Xi ’s independent with

∼ U[Xi−1 − 1,Xi−1 + 1].
E[X1] = 0, E [Xi | Xi−1] = Xi−1, For i > j , EX [i,j+1][Xi | Xj = xj ] = xj .

Z0 = E[Y ] = EX [1,n]f (X1, . . . ,Xn)] = E[
n∑

i=1

Xi ] = 0

Zi = EX [i+1,n][Y |x1, . . . , xi ]

=
i∑

j=1

xj + EX [i+1,n][
n∑
j=i

Xi |x1, . . . , xi ] =
i∑

j=1

xj + (n − i)xi

Zn = E[Y |x1, . . . , xn] = f (x1, . . . , xn) =
n∑

j=1

xj

|Zi − Zi−1| = |E[Y |X1, . . . ,Xi ]− E[Y |X1, . . . ,Xi−1]|

= |
i∑

j=1

xj + (n − i)xi −
i∑

j=i−1

xj + (n − i + 1)xi−1| = (n − i)|xi − xi−1|
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McDiarmid Bound

In general it is hard to prove a bound on |Zi − Zi−1|. This theorem
gives a sufficient condition:

Theorem

Assume that f (X1,X2, . . . ,Xn) satisfies, for all 1 ≤ i ≤ n,

|f (x1, . . . , , xi , . . . , xn)− f (x1, . . . , , yi , . . . , xn)| ≤ ci .

and X1, . . . ,Xn are independent, then

Pr(|f (X1, . . . ,Xn)− E[f (X1, . . . ,Xn)]| ≥ λ) ≤ 2e−2λ2/(
∑n

k=1 c
2
k ) .

[Changing the value of Xi changes the value of the function by at
most ci .]
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Proof

Define a Doob martingale Z0,Z1, . . . ,Zn:

• Z0 = E[f (X1, . . . ,Xn)] = E[f (X̄ )]

• Zi = E[f (X0, . . . ,Xn) | X1, . . . ,Xi ] = E[f (Xi , . . . ,Xn) | X i ]

• Zn = f (X1, . . . ,Xn) = f (X̄ )

We want to prove that this martingale satisfies the conditions of

Theorem (Azuma-Hoeffding Inequality)

Let Z0,Z1, . . . , be a martingale with respect to X0,X1,X2, . . . ,
such that

Bk ≤ Zk − Zk−1 ≤ Bk + ck ,

for some constants ck and for some random variables Bk that may
be functions of X0,X1, . . . ,Xk−1. Then, for all t ≥ 0 and any
λ > 0,

Pr(|Zt − Z0| ≥ λ) ≤ 2e−2λ2/(
∑t

k=1 c
2
k ) .
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Lemma

If X1, . . . ,Xn are independent and

|f (x1, . . . , , xi , . . . , xn)− f (x1, . . . , , yi , . . . , xn)| ≤ ci .

then for some random variable Bk ,

Bk ≤ Zk − Zk−1 ≤ Bk + ck ,

Zk − Zk−1 = E[f (X̄ ) | X k ]− E[f (X̄ ) | X k−1] .

Hence Zk − Zk−1 is bounded above by

sup
x

E[f (X̄ ) | X k−1,Xk = x ]− E[f (X̄ ) | X k−1]

and bounded below by

inf
y
E[f (X̄ ) | X k−1,Xk = y ]− E[f (X̄ ) | X k−1] .

Thus, we need to show

sup
x

E[f (X̄ ) | X k−1,Xk = x ]− inf
y
E[f (X̄ ) | X k−1,Xk = y ] ≤ c ,
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Zk − Zk−1 = sup
x,y

E[f (X̄ ,Xk = x)− f (X̄ ,Xk = y) | X k−1].

Because the Xi are independent, the values for Xk+1, . . . ,Xn do not depend on
the values of X1, . . . ,Xk .

sup
x,y

E[f (X̄ , x)− f (X̄ , y) | X1 = x1, . . . ,Xk−1 = xk−1]

= sup
x,y

∑
xk+1,...,xn

Pr
(
(Xk+1 = xk+1) ∩ . . . ∩ (Xn = xn)

)
·

(
f (x[1,k−1], x , x[k+1,n] − f (x[1,k−1], y , x[k+1,n])

But (
f (x[1,k−1], x , x[k+1,n] − f (x[1,k−1], y , x[k+1,n]) ≤ ck

and therefore
E[f (X̄ , x)− f (X̄ , y) | X k−1] ≤ ck
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Example: Polya’s Urn

• Start with m balls, r red, m − r blue.
• Repeat n times:

1 Pick a ball uniformly at random, check its color and return it
to the urn.

2 If red, add a new red ball, else add a new blue ball.

• Let Xi = 1 if we add a red ball at step i , else Xi = 0

We want to estimate the number of new red balls among the n
new balls, starting with ratio r/m

Sn
( r

m

)
=

n∑
i=1

Xi = f (X1, . . . ,Xn)

Claim: E[Sn(
r
m )] = n r

m .

On ”average” the ratio doesn’t change:
r+n r

m
m+n =

r(1+ n
m
)

m(1+ n
m
) =

r
m
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Example: Polya’s Urn

Start with M balls, R red, M −R blue. Repeat n times: pick a ball
uniformly at random. If red add a red ball, else add a blue ball.

Xi = 1 if we add a red ball in step i , else Xi = 0.

Sn(r/m) =
n∑

i=1

Xi = f (X1, . . . ,Xn)

Claim: E[Sn(
r
m )] = n r

m .

Proof: By induction on t ≥ 0, that E[St ] = tr/m.

E[St+1 | St ] = St +
r + St
m + t

E[St+1] = E[E[St+1 | St ]] = E

[
St +

r + St
m + t

]
= t

r

m
+

r + tr/m

m + t
= t

r

m
+

r(1 + t/m)

m(1 + t/m)
= (t + 1)

r

m
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Example: Polya’s Urn

Xi = 1 if added a red ball in step i , else Xi = 0,

Sn(
r
m ) =

∑n
i=1 Xi , and E[Sn(

r
m )] = n r

m

Let Zi = E[Sn| X1 = x1, . . . ,Xi = xi ]. We verify that Z1, . . . ,Zn is a
martingale (which we already know, since it’s Doob martingale.)

Zi = E[Sn| X1 = x1, . . . ,Xi = xi ] =
i∑

j=1

xj + E [Sn−i (
r +

∑i
j=1 xj

m + i
)]

=
i∑

j=1

xj + (n − i)
r +

∑i
j=1 xj

m + i

E[Zi+1 | X1, . . . ,Xi ] = E[E[Sn|X1,X2, . . . ,Xi+1] | X1 = x1, . . . ,Xi = xi ]

= E

 i∑
j=1

xj + Xi+1 + Sn−i−1

(
r +

∑i
j=1 xj + Xi+1

m + i + 1

)
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Zi = E[Sn| X1 = x1, . . . ,Xi = xi ] =
∑i

j=1 xj + (n − i)
r+

∑i
j=1 xj

m+i

E[Zi+1 | X1, ...,Xi ] = E

 i∑
j=1

xj + Xi+1 + Sn−i−1

(
r +

∑i
j=1 xj + Xi+1

m + i + 1

)

= E

 i∑
j=1

xj + Xi+1 + (n − i − 1)
r +

∑i
j=1 xj + Xi+1

m + i + 1


=

i∑
j=1

xj +
r +

∑i
j=1 xj

m + i
+ (n − i − 1)

r +
∑i

j=1 xj +
r+

∑i
j=1 xj

m+i

m + i + 1

=
i∑

j=1

xj +
r +

∑i
j=1 xj

m + i
+ (n − i − 1)

m+i+1
m+i (r +

∑i
j=1 xj)

m + i + 1
= Zi
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Example: Polya’s Urn

• Start with m balls, r red, m − r blue.
• Repeat n times:

1 Pick a ball uniformly at random, check its color and return it
to the urn.

2 If red, add a new red ball, else add a new blue ball.

• Let Xi = 1 if we add a red ball at step i , else Xi = 0

Sn
(
r
m

)
=
∑n

i=1 Xi = f (X1, . . . ,Xn) satisfies the Lipschitz
condition with bound 1, and the Xi ’s are independent.

E[Sn(
r
m )] = n r

m .

Zi = E[Sn| X1 = x1, . . . ,Xi = xi ] is a Doob martingale.

Pr(|Sn − n
r

m
| ≥ ϵ) ≤ 2e−2ϵ2/n

Pr(|Sn − n
r

m
| ≥ λ

√
n) ≤ 2e−2λ2
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